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Abstract. The general and explicit relation between phase times and dwell times for quantum tunneling
or scattering is investigated. Considering two identical propagating wave packets symmetrically impinging
a one-dimensional barrier, here we demonstrate that these two distinct transit time definitions give con-
nected results where, for such a colliding configuration, the phase time (group delay) accurately describes
the exact position of the scattered particles. The analytical difficulties that arise when the stationary phase
method is employed for obtaining the phase (traversal) times are all overcome, since the multiple wave
packet decomposition allows us to recover the exact position of the reflected and transmitted waves. In add-
ition to the exact relation between the phase time and the dwell time, this leads to the right interpretation
for both of them.

PACS. 03.65.Xp

Finding a definitive answer for the time spent by a par-
ticle to penetrate a classically forbidden region delim-
ited by a potential barrier has occupied physicists for
decades [1–15]. In particular, people have tried to intro-
duce quantities that have the dimension of time and that
can somehow be associated with the passage of the particle
through the barrier or, strictly speaking, with the defin-
ition of the tunneling time. These proposals have led to the
introduction of several transit time definitions that can be
summarized by three groups.

(1) The first group comprises a time-dependent descrip-
tion in terms of wave packets where some features of
an incident packet and the comparable features of the
transmitted packet are utilized to describe a quantifi-
able delay as a tunneling time [16].

(2) In the second group the tunneling times are computed
based on averages over a set of kinematical paths,
whose distribution is supposed to describe the particle
motion inside a barrier. In this case, Feynman paths
are used like real paths to calculate an average tun-
neling time with the weighting function exp [iSx(t)/h̄],
where S is the action associated with the path x(t)
(where x(t) represents the Feynman paths initiated
from a point on the left of the barrier and ending at
another point on the right of it [17]). The Wigner dis-
tribution paths [8], and the Bohm approach [18, 19] are
included in this group.

(3) In the third group we notice the introduction of a new
degree of freedom, constituting a physical clock for
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the measurements of tunneling times. This group com-
prises the methods with a Larmor clock [4] or an oscil-
lating barrier [20]. Separately, standing on itself is the
dwell time defined by the interval during which the in-
cident flux has to exist and act, to provide the expected
accumulated particle storage, inside the barrier [21].

In spite of the lack of general agreement [15, 22] among the
above definitions, the so called phase time [23] (group de-
lay) and the dwell time have an apparently well-established
relation between themselves [16, 24]. However, these time
definitions remain controversial since in the opaque barrier
limit they predict effective tunneling velocities that exceed
the vacuum speed of light and may even become unlim-
ited (Hartman effect) [25]. For instance, some of the barrier
traversal time definitions lead, under tunneling conditions,
to very short times, which can even become negative. It
can precipitately induce an interpretation of violation of
simple concepts of causality. Otherwise, negative speeds do
not seem to create problems with causality, since they were
predicted both within special relativity and within quan-
tum mechanics [10].
A possible explanation for such time advancements can

come, in any case, from consideration of the very rapid
spreading of the initial and transmitted wave packets for
large momentum distribution widths. Due to the similar-
ities between tunneling (quantum) packets and evanes-
cent (classical) waves, exactly the same phenomena are
to be expected in the case of classical barriers1. The ex-

1 In particular, we could mention the analogy between the
stationary Helmholtz equation for an electromagnetic wave
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istence of such negative times is predicted by relativity,
itself based on its ordinary postulates [15], and they appear
to have been experimentally detected in many works [26–
30]. In some recent analysis, the proportionality between
the phase time and the time averaged stored energy was
used to explain these unusual effects [13, 14, 24]. In par-
ticular, from the time-independent Schroedinger equation,
a relation between the group delay and the dwell time was
derived for quantum tunneling.
In this manuscript we concentrate on overcoming the

difficulties that appear when the stationary phase method
(SPM) is utilized for deriving tunneling times in order to
accurately investigate the relation between the phase time
delay and the dwell time for quantum tunneling or scat-
tering. Taking into account the restrictive conditions for
the use of the method, we report on a theoretical configu-
ration involving a symmetrical collision between two iden-
tical wave packets and a one-dimensional rectangular po-
tential barrier [31]. Using the procedure we call a multiple
peak decomposition [32], we demonstrate that summing
the amplitudes of the reflected and transmitted waves al-
lows for the reconstruction of the scattered wave packets,
so that the analytical conditions for the applicability of
the stationary phase principle can totally be recovered. For
such a colliding configuration, the phase time gives the ex-
act position of the center of mass of each symmetrically
scattered wave packet. Consequently, we can have a realis-
tic idea of the magnitude of the dwell time for the case in
which the energy of the incident particle is smaller than the
barrier potential energy (tunneling configuration). In spite
of the theoretical focus, the results here obtained apply
only to such configurations; these deserve further attention
by experimenters, while the existing experiments report in-
accurate results on non-symmetrical configurations.
In general, the SPM allows one to describe the move-

ment of the center of a wave packet constructed in terms
of a momentum distribution g(k− k0), which has a pro-
nounced peak around k0. Assuming that the characteris-
tic phase of the propagation varies smoothly around the
maximum of g(k−k0), the stationary phase condition en-
ables us to calculate the position of the peak of the wave
packet (highest probability region to find the propagating
particle). With regard to the standard one-way direction
wave packet tunneling, in which we consider a rectangular
potential barrier V (x), V (x) = V0 if x ∈ [−L/2, L/2] and
V (x) = 0 if x /∈ [−L/2, L/2], it is well known [31] that the
transmitted amplitude T (k, L) = |T (k, L)| exp [iΘ(k, L)] is
written in terms of

|T (k, L)|=

{
1+

w4

4k2ρ2(k)
sinh2 [ρ(k)L]

}− 12
(1)

and

Θ(k, L) = arctan

{
2k2−w2

2kρ(k)
tanh [2ρ(k)L]

}
, (2)

packet – in a waveguide, for instance – in the presence of a clas-
sical barrier and the stationary Schroedinger equation, in the
presence of a potential barrier [11, 21, 45]).

for which we have made explicit the dependence on the
barrier length L, and we have adopted ρ(k) = (w2−k2)

1
2

with w = (2mV0)
1
2 and h̄= 1. The above result is adopted

for calculating the transit time tT of a transmitted wave
packet when its peak emerges at x= L/2,

tT =
m

k0

dΘ(k, α)

dk

∣∣∣∣
k=k0

=
2mL

k0α

{
w4 sinh (α) cosh (α)−

(
2k20−w

2
)
k20α

4k20
(
w2−k20

)
+w4 sinh2 (α)

}
.

(3)

Here we have defined the parameter α = wL
√
(1−k20/w

2)
and k0 as the maximum of a generic symmetrical mo-
mentum distribution g(k−k0) that composes the incident
wave packet. By following our previous analysis [31], it is
well established that, due to the filter effect, the ampli-
tude of the transmitted wave is essentially composed by the
plane wave components of the front tail of the incoming
wave packet, which reaches the first barrier interface before
the peak arrival [33]. We have shown that the cut off of the
momentum distribution at k ≈ (1− δ)w increases the am-
plitude of the tail of the incident wave so that it contributes
so relevantly as the peak of the incident wave to the final
composition of the transmitted wave. Independently, due
to the novel asymmetric character of the transmitted am-
plitude g(k−k0)|T (k, L)|, an ambiguity in the definition of
the arrival/transmitted time is created [31]. In the frame-
work of the multiple peak decomposition [32], we have
suggested a suitable way for comprehending the conserva-
tion of probabilities where the asymmetric aspects previ-
ously discussed [31] could be totally eliminated. In order
to recover the scattered momentum distribution symme-
try conditions for accurately applying the SPM, we assume
a symmetrical colliding configuration of two wave packets
traveling in opposite directions. By considering the same
rectangular barrier V (x), we solve the Schroedinger equa-
tion for a plane wave component of momentum k for two
identical wave packets symmetrically separated from the
origin x = 0. By assuming that φL(R)(k, x) are station-
ary wave solutions of the Schroedinger equation, when the
wave packet peaks simultaneously reach the barrier (at the
mathematically convenient time t=−(mL)/(2k0)) we can
write

φL(R)(k, x)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ
L(R)
1 (k, x) = exp [±ikx]+RL(R)(k, L) exp [∓ikx] ,

x <−L/2 (x > L/2) ,

φ
L(R)
2 (k, x) = γL(R)(k) exp[∓ρx]+βL(R)(k) exp[±ρx],

−L/2< x < L/2 ,

φ
L(R)
3 (k, x) = TL(R)(k, L) exp [±ikx] ,

x > L/2 (x <−L/2) .

where the upper (lower) sign is related to the index L (R)
corresponding to the incidence on the left- (right-) hand
side of the barrier. By assuming the conditions for the
continuity of φL,R and their derivatives at x=−L/2 and
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x= L/2, after some mathematical manipulations, we can
easily obtain

RL,R(k, L) = exp [−ikL]

{
exp [iθ(k)][1− exp [2ρ(k)L]]

1− exp [2ρ(k)L] exp [i2θ(k)]

}

(4)

and

TL,R(k, L) = exp [−ikL]

{
exp [ρ(k)L][1− exp [2iθ(k)]]

1− exp [2ρ(k)L] exp [i2θ(k)]

}
,

(5)

where

θ(k) =
2kρ(k)

2k2−w2
(6)

and RL(R)(k, L) and TR(L)(k, L) are intersecting each
other.
Since the above colliding configuration is spatially sym-

metric, the symmetry operation corresponding to 1↔ 2 (or
L↔R) particle exchange can be parameterized by the pos-
ition coordinate transformation x→−x. At the same time,
taking advantage of the notation that we have adopted, it
is easy to observe that

φL(R)(k, x) = φ
L(R)
1+2+3(k, x)

= φ
R(L)
1+2+3(k,−x) = φ

R(L)(k,−x) , (7)

where the L↔ R interchange is explicit. Consequently,
in the case that we analyze the collision of two identical
bosons, we have to consider a symmetrized superposition
of the L and R wave functions,

φ+(k, x) = φ
L(k, x)+φR(k, x)

= φR(k,−x)+φL(k,−x) = φ+(k,−x) . (8)

Analogously, in case we analyze the collision of two iden-
tical fermions (just taking into account the spatial part
of the wave function), we have to consider an antisym-
metrized superposition of the L and R wave functions,

φ−(k, x) = φ
L(k, x)−φR(k, x)

= φR(k,−x)−φL(k,−x) =−φ−(k,−x) . (9)

Thus the amplitude of the re-composed transmitted plus
reflected waves would be given by RL,R(k, L)+TR,L(k, L)
for the symmetrized wave function φ+ and byR

L,R(k, L)−
TR,L(k, L) for the antisymmetrized wave function φ−. Re-
porting on the previously introduced procedure [32] that
we call a multiple peak decomposition, for such a pictorial
symmetrical tunneling configuration, we can superpose the
amplitudes of the intersecting probability distributions be-
fore taking their squared modulus in order to obtain

RL,R(k, L)±TR,L(k, L)

= exp [−ikL]

{
exp [ρ(k)L]± exp [iθ(k)]

1± exp [ρ(k)L] exp [iθ(k)]

}

= exp {−i[kL−ϕ±(k, L)]} , (10)

with

ϕ±(k, L) =− arctan

{
2kρ(k) sinh [ρ(k)L]

(k2−ρ2(k)) cosh [ρ(k)L]±w2

}
,

(11)

where the plus sign is related to the results obtained for the
symmetrized superposition and theminus sign is related to
the antisymmetrized superposition. Independently of the
symmetrization characteristic of the wave function, we ob-
serve from (10) that, different from the previous standard
tunneling analysis, by adding the intersecting amplitudes
at each side of the barrier, we keep the original momentum
distribution undistorted since |RL,R(k, L)±TR,L(k, L)| is
equal to one. At this point we recover the most fundamen-
tal condition for the applicability of the SPM. It allows us
to accurately find the position of the peak of the recon-
structed wave packet composed by reflected and transmit-
ted superposing components. The phase time interpreta-
tion can be, in this case, correctly quantified in terms of the
analysis of the novel phase ϕ±(k, L).
From this point we have opted for performing the an-

alysis of the symmetrized superposition from which, for
simplicity, we have suppressed the plus sign from the no-
tation. We first notice that the novel scattering amplitudes
g(k−k0)|RL,R+TR,L| ≈ g(k−k0) still remain symmetric
and, from the SPM, the scattering phase time results in

t
(α)
T,ϕ =

m

k

dϕ(k, α)

dk
=
2mL

kα

w2 sinh (α)+αk2

2k2−w2+w2 cosh (α)
, (12)

where k→ k0, with α previously defined.
2 Hereafter, we

cannot differentiate the tunneling from the reflecting waves
for such a scattering configuration.We have simply demon-
strated that the transmitted and reflected interfering am-
plitudes results in a unimodular function, which just mod-
ifies the envelope function g(k−k) by an additional phase.
The incongruities previously pointed out, which cause the
distortion of the momentum distribution g(k−k), are com-
pletely eliminated in this case. The point is that the old
phase Θ(k, L) (2) appears when we treat separately the
momentum amplitudes T (k, L) and R(k, L), which de-
stroys the symmetry of the initial momentum distribution
g(k−k0) by the presence of the multiplicative term T (k, L)
or R(k, L), and the novel phase ϕ(k, L) appears only when
we sum the tunneling/scattering amplitudes so that the
symmetrical character of the initial momentum distribu-
tion is maintained (due to the result of (10)). It re-qualifies
the SPM for accurately computing the time dependence
of the position of the peak of a wave packet. At the same
time, one could argue on the possibility of extending such
a result to the tunneling process established in a standard
way. We should assume that in the region inside the po-
tential barrier, the reflected and transmitted amplitudes
should be summed before we compute the phase changes.
Obviously, it would result in the same phase time expres-
sion as represented by (12). In this case, the assumption

2 A similar procedure can be carried out for the antisym-
metrized wave function configuration.
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of there (not) existing interference between the momen-
tum amplitudes of the reflected and transmitted waves at
the discontinuity points x= −L/2 and x = L/2 is purely
arbitrary. Consequently, it is important to reinforce the ar-
gument that such a possibility of interference leading to
different phase times is strictly related to the idea of using
(or not) the multiple peak (de-) composition in the region
where the potential barrier is localized. To illustrate the
difference between the standard tunneling phase time t

(α)
T

and the symmetrical scattering phase time t
(α)
T,ϕ we intro-

duce the parameter n= k2/w2 and we define the classical
traversal time τk = (mL)/k. The normalized phase times
can then be written

t
(α)
T =

2τk
α

{
cosh (α) sinh (α)−αn(2n−1)

[4n(1−n)+sinh2 (α)]

}
,

t
(α)
T,ϕ =

2τk
α

{
nα+sinh (α)

2n−1+cosh(α)

}
, (13)

which are plotted in Fig. 1 for some discrete values of n.
At this point, could one say metaphorically that the

identical particles represented by both impinging wave
packets spend a time equal to tT,ϕ inside the barrier before
retracing its steps or tunneling? The answer is in the defin-
ition of the dwell time for the same symmetrical colliding
configuration that we have proposed above. The dwell time
is a measure of the time spent by a particle in the barrier
region regardless of whether it is ultimately transmitted or
reflected [4],

tD =
m

k

∫ +L/2
−L/2

dx|φ2(k, x)|
2 , (14)

where k/m is the flux of incident particles and φ2(k, x) is
the stationary state wave function depending on the collid-
ing configuration that we are considering (symmetrical or

Fig. 1. Normalized times for the standard one-way direction
tunneling and the symmetrical scattering process. These times
can be understood as transit times in the units of the classical
traversal time τk = (mL)/k. Both present the same asymptotic
behavior

standard). To derive the relation between the dwell time
and the phase time, we reproduce the variational theorem,
which yields the sensitivity of the wave function to vari-
ations in energy. After some elementary manipulations of
the Schroedinger equation [34], we can write

φ†φ=
1

2m

∂

∂x

(
∂φ

∂E

∂φ†

∂x
−φ†

∂2φ

∂E∂x

)
. (15)

Upon integration over the length of the barrier we find

2m

∫ +L/2
−L/2

dx|φ2(k, x)|
2 =

(
∂φ

∂E

∂φ†

∂x
−φ†

∂2φ

∂E∂x

)∣∣∣∣
+L/2

−L/2

.

(16)

In the barrier limits (x=±L/2), for the symmetrical con-
figuration that we have proposed, we can use the superpo-
sition of the scattered waves to substitute in the right-hand
side of the above equation,

φ(k, x)|−L/2(+L/2)

=
φ
L(R)
1 (k, x)+φ

R(L)
3 (k, x)

√
2

= exp [±ikx]+exp [∓ikx+ i(ϕ(k, L)−kL)] . (17)

By evaluating the right-hand side of (17), we obtain

∂k

∂E

dϕ

dk
=
m

k

∫ +L/2
−L/2

dx|φ2(k, x)|
2−
Im[exp (iϕ)]

k

∂k

∂E
.

(18)

The first term of the above equation is the phase time
or the aforementioned group delay t

(α)
T,ϕ. The second term

leads to the explicit computation of the dwell time. By
respecting the continuity conditions of the Schroedinger
equation solutions, in the barrier region we obtain a sta-
tionary wave symmetrical in x,

φ2(k, x) =
φL2 (k, x)+φ

R
2 (k, x)√
2

,

=
√
2(β+γ) cosh [ρ(k)x] (γ ≡ γL,R, β ≡ βL,R) ,

(19)

which, from (14), leads to

t
(α)
D,ϕ =

2τkn

α

sinh (α)+α

2n−1+cosh(α)
. (20)

The self-interference term, which comes from the momen-
tary overlap of incident and reflected waves in front of the
barrier, is given by3

t
(α)
I,ϕ =−

Im[exp (iϕ)]

k

∂k

∂E

=
m sin (ϕ)

k2
=
2τk
α

(1−n) sinh (α)

2n−1+cosh(α)
. (21)

3 We have printed the phase index ϕ for all the results related
to the symmetrical colliding configuration.
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In conclusion, the dwell time is obtained from a simple
subtraction of the quoted self-interference delay tI,ϕ from
the phase time that describes the exact position of the
peak of the scattered wave packets, tT,ϕ = tD,ϕ+ tI,ϕ, as we
can notice in Fig. 2. Adopting the classical traversal time
τk = (mL)/k in place of the barrier time τw = (mL)/w =

τk
√
n for normalizing the results illustrated in Fig. 2 may

clarify some important aspects. Let us assume that the
amplitude of each separated transmission coefficient T pre-
vails over the amplitude of each reflection coefficientR, i.e.
|T |2 > |R|2→ |T |2 > 1/2. For satisfying such a requirement

(1) gives (wL)/(2
√
n) ≤ wL sinh (α))/(2

√
n) < 1. At the

same time, the possibility of accelerated tunneling tran-
sitions with respect to the traversal classical course, i.e.

t
(α)
T,ϕ < τk, occurs only when α/2 ≥ (α/2) tanh (α/2) > 1.

Since α = wL
√
1−n, the intersection of the “weak ver-

sion” of both of the above constraints, (wL)/(2
√
n) < 1

and α/2> 1, leads to n > 2, which definitely does not cor-
respond to a tunneling configuration. This analysis leads
to a very important conclusion: in the region where the
one-way direction transmission coefficient prevails over the
reflection coefficient, the wave packet transmitted compo-
nents should tunnel with a retarded velocity with respect
to the classical velocity since, in this case, t

(α)
T,ϕ > τk. The

supposed accelerated transit of the tunneling wave packet,
and therefore, superluminal velocities and the Hartman ef-
fect, would never occur for |T |2 > |R|2.
To summarize, we have reported on a way of com-

prehending the conservation of probabilities [31, 32] for

Fig. 2. Exact phase time (solid line), self-interference delay (dotted line), and the dwell time (dashed line) as a function of the nor-
malized energy n= k2/w2 ∝ E0/V0 for the symmetrical (black line) and the standard one-way direction (red line) configuration
for wave packets colliding with a rectangular potential barrier. These times are normalized by the barrier time τw = (mL)/w in
the first plot and by the classical traversal time τk = (mL)/k in the second plot. Here we have adopted wL= 4π for α=wL

√
1−n

the very particular tunneling configuration in which the
asymmetry and the distortion aspects presented in the
standard case were all eliminated. As a result the phase
time could be accurately calculated in order to give the ex-
act position of the scattered wave packets (or particles),
for which, in the standard case, the position of the peak
is shifted. Essentially, we have claimed, relevant for the
use of the multiple peak decomposition technique in ob-
taining the exact relation between two distinct scatter-
ing/tunneling time definitions: the phase time and the
dwell time. In spite of quoting the superluminal interpre-
tation, our discussion was concerned with the definition of
the strict mathematical conditions entailing the applica-
bility of the stationary phase principle in deriving transit
times. Even with the modifications introduced, our results
corroborate the analysis [13, 14, 24] that gives an answer
to the paradox of the Hartman interpretation [25]. In a
certain sense, we accept the fact that one should keep in
mind that the Hartman effect, even in its more sophisti-
cated consequences) appears to have been experimentally
verified [35–39], in particular, for opaque barriers and non-
resonant tunneling [40] and also reproduced by numerical
simulations and a constrained theoretical analysis [41, 42].
In general, there have also been some attempts of yield-
ing complex time delays for the analysis of tunneling, ul-
timately due to a complex propagation constant, where
the supposition of superluminal features is considered ar-
tificial, since the transmitted peak is not causally related
to the corresponding incident peak. This semi-classical
method makes use of complex trajectories which, in their
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turn, enable the definition of real traversal times in the
complexified phase space [9, 43, 44]. Yet concerning the
subsequent theoretical perspectives in the above frame-
works, the symmetrical colliding configuration also offers
the possibility of exploring some problems involving soliton
structures. In particular, all the above arguments suggest
that the idea of complexifying time should be investigated
for some other scattering configurations, which reinforces
the more general assertion that the investigation of wave
propagation across a tunnel barrier has always been an in-
triguing subject which is wide open both from a theoretical
and an experimental point of view.
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